
1

Effective Computational Thinking (CT) and Coding

Instruction - A Teacher's Guide

Table of Contents

Contents

Motivation for this Guide 2

Learner Readiness - An Exploration of Universal Design for Learning 2

Engagement 3

Representation 4

Action and Expression 4

What Does Coding and Computational Thinking Look Like? 5

Unplugged and Physical Computing Activities 7

Scaffolding Learning to Code 8

Copy-Code/Modify/Extend Activities 8

Activity 1 - Exploring Concurrent Events (Scratch) - Copy/Modify/Extend 9

Activity 2 - Exploring Light and Plant Growth (Micro:bit) - Copy/Modify/Extend 10

Story variables Error! Bookmark not defined.

Guided Tasks 14

Parsons Problems 14

PRIMM 15

Activity 3 - Exploring Movement (ScratchJr) - PRIMM 17

Targeted Task - Misconceptions 19

Variable Misconception Example 1 19

Variable Misconception Example 2 20

Communication 20

Initiation and Planning 21

Performing and Recording 22

Code Debugging 23

Code Tracing 23

Collaboration 24

Assessment Strategies 25

Single Point Rubric - Coding in Science and Technology 27

References 27

Glossary 28

2

Motivation for this Guide

Coding and computational thinking (CT) learning expectations have been integrated into the Ontario Math

grades 1-8 (2020), Math grade 9 (2021), Science and Technology grades 1-8 (2022), and Science grade 9

curricula (2022). Many other jurisdictions within Canada and around the world have redefined learning

expectations to include elements of CT and coding. In 2021, the OECD (Organization for Economic

Cooperation and Development) included a set of computational thinking questions into the well known PISA

(Programme for International Student Assessment) mathematics assessment.

Computational Thinking (CT) has various definitions, but the basic idea involves student exploration of how

they can be creative and solve problems by decomposing situations into fundamental steps using algorithms

and generalizing possible solutions. An algorithm is a precise set of steps that describe a process. Coding

involves the use of a programming language environment to implement algorithms so learners can be creative

and explore problem solving strategies.

The goal of this guide is to provide methods to help you, as an educator, deliver effective instruction in

computational thinking and coding across the Science, Technology, Engineering, and Math (STEM) curriculum.

The approaches described in this document are provided from many different information sources and are not

limited to specific programming languages or grade levels. Following each teaching method, there will be a

short explanation of how it might look in the classroom.

Ontario Curriculum Connections

The Grades 1-8 math curriculum guidance explains that "coding can be incorporated across all strands

and provides students with opportunities to apply and extend their math thinking, reasoning, and

communicating"1 The Grades 1-8 Science and Technology curriculum includes a focus on “Coding and the

Impact of Coding and Emerging Technologies”2.

Coding is more than simply an alternative tool that can be used alongside more traditional tools such as paper

and pencil, calculators, and scientific instruments (e.g., microscopes, measurement tools). Coding education is

now embedded within the learning experiences of all students in Ontario. This guide will reference some

simple examples of how coding pedagogical techniques could be used in the context of STEM activities in the

classroom.

Learner Readiness - An Exploration of Universal Design for Learning

Students enter the classroom with a diverse set of skills and knowledge related to their understanding of

coding. The pedagogical techniques explored in this document should be considered within the context of

addressing this diversity and fostering an inclusive learning environment using the Universal Design for

Learning (UDL) framework.

The Three (3) Principles of UDL are

● Engagement

1 https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/context/the-strands-in-the-
mathematics-curriculum#strand-c-algebra
2 [https://www.dcp.edu.gov.on.ca/en/sci-tech-key-changes/curriculum-context

about:blank
about:blank
about:blank

3

● Representation

● Expression and Action

Engagement

This principle reflects the fact that learners have varied interests and their interests can change over time.

Computational thinking and coding activities can be readily designed to engage a wide variety of student

interests. Some examples of engagement techniques for coding education include

● Foster a sense of exploration

○ Encourage students to use coding to create images, tell stories, solve problems, control devices

(physical computing), and design and build interactive games.

Figure 1: Block-based coding example

○ Sample code that can be downloaded to a micro:bit (physical computing) and manipulated/built

on by students

● Model effective communication of new concepts or concept reviews through live coding (think-aloud

programming).

○ Live coding is a demonstration of the act of coding, in person and live in front of a class.

Teachers should encourage class discussions as the coded artifact is created. This can be an

effective way to model problem solving, new computational concepts, and effective debugging

techniques.

● Use guided exploration techniques such as Use-Modify-Create mode or, the more detailed, PRIMM

model to start with existing coded artifacts to focus on understanding and code reading skills and

progress toward student code writing skills.

● Allow for student choice during project based learning activities so they can explore their interests and

foster culturally relevant and meaningful tasks.

● Reduce common pitfalls as learners develop their coding and problem solving skills.

○ There are many well known misconceptions in computing. Teachers should be prepared to

explore the most common misconceptions with students. Students can become overwhelmed

with errors while they learn to code. To help reduce these early barriers to success teachers can

implement Parsons Problems. This technique involves providing all of the elements for a

4

successful program and the students focus on the problem solving task by arranging the code

statements or code blocks.

● Encourage collaboration such as pair programming to support student success with coding.

● Chunk the learning into manageable units to support a sense of accomplishment for learners as they

reflect on the concepts from each new activity.

● Set clear expectations that everyone in the classroom is able to be successful and everyone can share

their knowledge with others as coding is best performed in a collaborative manner.

Representation

As in other subject areas, educators and learners develop a vocabulary and methods of knowledge

representation. Reading, modifying, and writing programs are just one component of representing

computational thinking and coding skills. Some examples of representation techniques for coding education

include

● Model effective planning and design methods for coding projects including pseudocode and

flowcharts for algorithms and code tracing of variables.

● Ensure coding environments are fully accessible for all learners. It is important that coding tools have

the ability to adjust the text size or block sizes. Many coding tools will also use colours to indicate the

type of error or the type of coding block. Primary students and English Language Learners (ELL) would

be more successful if the amount of reading is reduced and the coding environment provides limited

options to reduce the cognitive load for the learner. There are also flexible language setting options

available in many of the coding environments referenced in this document.

● Provide timely descriptive feedback. Some digital tools will provide timely feedback, but teachers

should model effective feedback and debugging skills in class discussions and individual student

assistance sessions.

● Model effective computing vocabulary within class discussions and individual student assistance

sessions.

○ e.g., debugging, test, execute/run, variable, operator, expression (see glossary)

● Model proper terminology when discussing concepts and providing structured learning materials

○ e.g., store the value 5 in the variable age, update the value stored in the variable by 2, repeat

the statements until a condition is met or a specific number of times

● Educators have a responsibility to ensure that teaching and learning in the areas of coding and

computational thinking are culturally responsive and relevant, making sure that all students are included

in coding opportunities through carefully-selected, relevant learning tasks. Students should use “STEM

and CS [coding] to empower themselves and their communities”(Madkins, 2020), and educators should

acknowledge and address that many algorithms are not without bias and racism.

Action and Expression

Learners express their understanding and knowledge of coding using various methods including physical,

written, and oral expressions of their ideas. Teachers can provide multiple methods for learners to express

their ideas through code. Some examples of action and expression include:

● Provide scaffolded coding activities including starter projects that include working code elements.

Learners can use these scaffolds to read and understand existing code elements and communicate

their modification using new code blocks/statements and associated comments explaining their

thinking.

5

● Jointly design project goals and assessment templates (eg. single point rubrics) with students.

● Provide opportunities for students to journal their coding progress. Include student reflection

opportunities throughout their learning.

● Teachers should provide assessment opportunities for students using observation, conversations, and

artifacts (products). (See the Assessment Strategies section of this document)

What Does Coding and Computational Thinking Look Like?

Selecting a programming language can be a challenging task and educators should consider the context of the

coding activity and the students' prior experience with coding and computational thinking (CT). "Coding can

include a combination of pseudocode, block-based coding programs, and text-based coding programs.".

(Grade 1 Mathematics Key Concept3)

Pseudocode is an informal method of designing a set of computational operations. Whether you decide to use

block-based or text-based coding tools, traditional coding concepts can all be categorized as either: sequential,

selection, or repetition tasks.

Block-based coding environments are excellent tools to explore CT and coding for Grades 1-8. Programs are

usually called scripts and they consist of a collection of blocks or puzzle pieces that define the operations or

steps involved in the coding task. Writing or modifying programs involves the dragging and dropping of various

blocks to achieve the desired result. As students modify programs they will encounter errors, but the types of

errors encountered with block-based coding environments are usually restricted to logic errors instead of

language violation error.

Code with Syntax Error Corrected Code

Compute the area of a rectangle

width = 10

width = 20

area = width X height

print (area)

Compute the area of a rectangle

width = 10

width = 20

area = width * height

print (area)

Figure 2: Common Coding Error Example

A programming language violation error is usually referred to as a syntax error. The example code in Figure 2

involves the incorrect use of the letter X to perform a multiplication operation. Python, and many other text-

based programming languages, require the use of the asterisk (*) character to indicate a multiplication

operator. As we can see in this example coding requires a high level of precision as computers are not able to

determine the intent or purpose of the program.

ScratchJr is an excellent block-based coding environment that provides these fundamental components in a

very accessible manner for primary level students. With ScratchJr, students: "can program their own interactive

stories and games. In the process, they learn to solve problems, design projects, and express themselves

creatively on the computer." (Source: ScratchJr website).

3 https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/grades/g1-math/strand-c/c3

about:blank
https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/grades/g1-math/strand-c/c3

6

Figure 3: ScratchJr (Block-based Coding) Example

Scratch provides an expanded set of features to enable additional computational problem solving and coding

skills. Scratch introduces new concepts such as concurrent events (using broadcast blocks), variables, and

custom blocks (functions or subprograms).

Figure 4: Scratch (Block-based Coding) Example

Microsoft MakeCode provides similar features as Scratch with the addition of physical computing programs

using a microcontroller such as Micro:bit. MakeCode provides learners with the ability to develop their projects

using both block-based and text-based programming languages (Python and Javascript).

7

Figure 5: Microsoft MakeCode Micro:bit (Block-based Coding) Example

Text-based coding environments provide students with additional options to explore the curriculum. The most

commonly used text-based coding language is Python. Using text-based coding requires learners to have

novice level keyboarding skills.

Figure 6: Micro:bit (text-based Coding - Python)

Physical Computing can take many forms from unplugged activities to motors and more.

Unplugged and Physical Computing Activities

The CS Unplugged4 activities are excellent resources for teachers to consider using with their students to

explore coding concepts. The activities do not require the use of a computer, but they support student learning

of how information is represented by computers and how computers can be used to aid in problem solving

4 CS Unplugged (https://www.csunplugged.org/en/ / https://www.csunplugged.org/fr/)

https://www.csunplugged.org/en/
https://www.csunplugged.org/en/
https://www.csunplugged.org/fr/

8

tasks. CS Unplugged activities use role playing and concrete artifacts in support of student engagement.

Students can use the provided activity cards to explore algorithms. If there are classroom resources such as

physical robot devices (e.g., Ozobot, Sphere, Dash, etc) available, the algorithms can be tested using actual

devices.

"Physical computing covers the design and realization of interactive objects and installations and allows

students to develop concrete, tangible products of the real world that arise from the learners’ imagination.

This way, constructionist learning is raised to a level that enables students to gain haptic experience and

thereby concretizes the virtual." (Przybylla/Romeike) Bringing physical devices into CT and coding activities

provides an opportunity for students to interact directly with the code as they create programs that sense the

world around them or change their environment. Some commonly used devices for physical computing other

than robots include the Micro:bit and Phidgets.

The micro:bit is one example of a microcontroller. Microcontrollers are similar to computers, they have a

processor, and generally have different inputs and outputs of varying complexity. The micro:bit from the BBC

has become a commonly used microcontroller due to cost, ease of use, and variety of applications. See the

diagram below for a quick breakdown of the different parts of the micro:bit.

Figure 7: Micro:bit - Microcontroller

In addition to the built-in capabilities of the micro:bit, Pin 0, Pin 1, or Pin 2 can be used to connect to other

external devices such as LEDs (Light Emitting Diodes) or servos.

Micro:bits and many other boards can be combined with input sensors to measure different values, for

example, moisture levels, touch, sound intensity, or CO2 levels. Additionally, the boards can provide different

outputs, for example turning a water pump on, or turning a servo or motor.

Scaffolding Learning to Code

Copy-Code/Modify/Extend Activities

A highly structured coding activity is often known as a coding tutorial. This approach often involves a set of

written or oral instructions to be followed precisely to create a working program. Each learner is able to

9

recreate the same program if the instructions are followed well, but there is often minimal knowledge retained

by learners along the way unless there are opportunities to consolidate the problem solving and coding

strategies that were used to design the program.

Activity 1 - Exploring Concurrent Events (Scratch) - Copy/Modify/Extend

Coding tutorials or copy code activities are effective initial opportunities for students to gain some success

with coding. In the example below, students begin with a copy code activity to see different ways to have

sprites move around the stage. They are prompted to observe how the sprites are moving around and to make

connections back to the code. Students then can modify the code to help them apply some of their learning.

Finally, students can go beyond the activity by choosing their own sprites for the letters of their name and

animate the letters using the movement code that they’ve copied, to make a dance-party-like animation of their

name.

Example5:

5 Source document:
https://docs.google.com/drawings/d/1D0Th8Q7VyZnP2TZrLE2_m8xKRrVwLw6Ke0slYLic2wE/edit?usp=sharin
g

https://docs.google.com/drawings/d/1D0Th8Q7VyZnP2TZrLE2_m8xKRrVwLw6Ke0slYLic2wE/edit?usp=sharing
https://docs.google.com/drawings/d/1D0Th8Q7VyZnP2TZrLE2_m8xKRrVwLw6Ke0slYLic2wE/edit?usp=sharing

10

Activity 2 - Exploring Light and Plant Growth (Micro:bit) - Copy/Modify/Extend

An example of copy coding in Python and Science & Technology is provided below6. The activity could be

implemented using Blocks or a Python coding environment in Make Code or the Micro:bit Editor for Python.

6 Source document:
https://docs.google.com/drawings/d/1QrHVJWE5qAItXmgvZZ5YmN5ppYKIXYyURguY6W5hhZY/edit?usp=sha
ring

https://docs.google.com/drawings/d/1QrHVJWE5qAItXmgvZZ5YmN5ppYKIXYyURguY6W5hhZY/edit?usp=sharing
https://docs.google.com/drawings/d/1QrHVJWE5qAItXmgvZZ5YmN5ppYKIXYyURguY6W5hhZY/edit?usp=sharing

11

As students progress in the activity, students are able to practice detecting and adjusting their design for

different levels within an abiotic factor like brightness and design the output. The complexity of the coding can

be increased by having students detect and design outputs for combined abiotic factors.

Microsoft MakeCode - Micro:bit using Blocks or Python (https://makecode.microbit.org/)

Blocks Python

Micro:bit Editor - Python (https://python.microbit.org/v/3)

Python

https://makecode.microbit.org/
https://python.microbit.org/v/3

12

https://makecode.microbit.org/_Keg7Jg7deXu4

Story variables
Story variables can be used to support the Initiating and Planning phase of the Engineering Design Process for

coding projects. Phil Bagge has developed the story variable approach to introduce the concept of code

variables within the context of stories.

https://makecode.microbit.org/_Keg7Jg7deXu4

13

Example of Story Variables in Science and Technology7

In the Science and Technology themed example, students may think of values like the weight of the object that

the micro:bit is attached to, the height from which the object is being dropped, the velocity of the object as it

falls or the direction in which the object is moving.

7 Source document:
https://docs.google.com/document/d/11EjxPT2OtR3zYBunfU8yRiBg_w03uef8wRCEPnCNSjw/edit?usp=sharin
g

https://docs.google.com/document/d/11EjxPT2OtR3zYBunfU8yRiBg_w03uef8wRCEPnCNSjw/edit?usp=sharing
https://docs.google.com/document/d/11EjxPT2OtR3zYBunfU8yRiBg_w03uef8wRCEPnCNSjw/edit?usp=sharing

14

Guided Tasks

Parsons Problems

Parsons problems are used to assess student understanding of code without regard to language syntax.

Students are provided with all of the required code blocks or statements to solve a challenge, but not in the

proper sequence. Parsons problems can be implemented in many forms including programming language

statements, pseudocode, or blocks.

Parsons problems are an assessment tool that eliminates the need for students to worry about programming

language syntax or coding blocks. Students can simply focus on the problem solving task.

Here is an example8 of a Parsons problem using Python. In the example, it uses the Work = Force x distance

formula and allows students to order the code and Python will determine the result.

Parsons Problem Solution

Figure 8: Parsons Problem - Structures and Mechanisms

Parsons problems can also be created for block-based languages and they can provide students with

immediate feedback.

In Scratch, Parsons problems can be made within Scratch with the blocks provided to students so that they

can arrange the blocks, test, and then adjust their code in rapid succession. In the sample provided students

can use the disabled, but once-functioning code to work again.

Example of Parsons problems in Science and Technology

8 Source: http://parsons.problemsolving.io/puzzle/563342add2314102815a97a9b05595e7

http://parsons.problemsolving.io/puzzle/563342add2314102815a97a9b05595e7

15

In this example we use a Scratch script to calculate the work or distance based on the input from the user. No

additional blocks are needed, and no extra blocks are included.

Parsons Problem Parsons Problem Solution

Example Scratch Parsons Problem Project: https://scratch.mit.edu/projects/753631554

PRIMM

PRIMM (Predict-Run-Investigate-Modify-Make) represents a guided discovery approach to learning where

"classroom activities can be designed which involve predicting the output of code, code comprehension and

gradually making new programs" (Sentance, 2020). PRIMM can be considered an elaboration of a more

simplified Copy-Code/Modify/Extend approach discussed in the previous section of this document.

https://scratch.mit.edu/projects/753631554

16

PRIMM starts with an analysis of existing code individually, in small groups, or as a whole class. The learners

are asked to predict the results. This task engages the learner's mental model of computation and

understanding of data structures and algorithms. There must be sufficient prior experience and learning with

the coding environment for students to be well positioned to predict the outcome of the program. This is a low

stakes activity where there could very well be varying interpretations of the intentions of the program.

The run phase can be completed by the teacher or by individual students once they have made their

predictions. The teacher should then follow this coding project with a set of inquiry or investigation tasks or

"what if scenarios…". These inquiry tasks can help consolidate the learner's understanding of the coding

elements. The students are then provided with opportunities to explore open-ended projects by modifying or

making new programs using some of the concepts introduced in the learning activity.

Figure 9: Student Perspective of PRIMM Activities - Progression of Ownership

As shown in Figure 9, students will begin the PRIMM process by examining an existing program to predict its

behavior. Students will then run the code to validate their understanding of the code. Students will then be

provided with investigation opportunities to make modifications to the existing program. As students become

more confident in their understanding of the computational concepts involved in the investigation they can plan

and implement (code) a new project based on their interests.

17

Figure 10: Teacher Role of PRIMM Activities

Figure 10 provides guidance for teachers as they prepare the initial "starter" project with guided exploration

questions. Teachers will slowly transition from guided instruction to supporting and encouraging students as

they plan and implement student-initiated coding projects.

Activity 3 - Exploring Movement (Scratch Jr) - PRIMM

PRIMM: ScratchJR Example: Students are…

Predict

What will this
script do to
the Scratch
cat?

- turn-and-talking with a partner
- contributing to a whole-class
conversation
- writing or drawing what they think
will happen

18

Run

Run the
script and
watch what
happens.

- running the code independently or
with a partner
- observing what happens when the
code is run

Investigate
What block

is making

the sprite

move

forward?

What is the

result of the

loop?

- examining the code to identify the
components (e.g., inputs, outputs,
etc.)
- identifying which block(s) cause
which action(s)

Modify
Add a sprite

or choose 1

of the other

ones already

present (Ball

and Boat).

Modify the

code so that

these sprites

move.

- modifying the code by adding,
deleting, or altering what is already
present in order to modify the input,
output, etc.

Make
Create a

ScratchJR

project

where the

Cat interacts

with another

sprite.

 - creating a project where they
apply the skills they have learned

19

Targeted Task - Misconceptions

Targeted tasks can be designed to expose potential misconceptions about writing code. These tasks should

require a short duration to complete, and they should be accompanied by a set of inquiry questions about the

misconception being investigated. For example, the sequence or order of coding statements or blocks is very

important so students could be given tasks that involve the incorrect order and ask them to figure out how to

correct the error by changing the order.

There are many common misconceptions formed by novice programmers.

Variable Misconceptions

Variables are used to manage state during the execution of a program. Variables have an initial value, either

implied or explicitly assigned. The value stored in the variable can either remain the same throughout the

program or it could be modified.

Variable Misconception Example 1

When using Scratch students are often confused by the difference between a set block, change by block,

and a math operator block when modifying or comparing values stored in variables.

Scratch Script What is the value stored in the variable age?

6

20

20

5

Variable Misconception Example 2

In a physical computing example, a program for a micro:bit was made where the student wants to determine

the magnetic field strength of different objects and specific magnets, bar, u shaped, and neodymium disk

magnets in terms of relative strength and positive or negative regions by area for the magnets. The sample

below contains an example of the variable misconception. When the “A” button is pressed, the variable is

correctly made equal to the magnetic field strength. When the “B” button is pressed, the variable has the value

of the magnetic field added to the existing value stored in the variable.

Communication

Communication occurs at many different levels in CT and coding. CT and coding can be explored as a literacy

or language skill. There are fundamental differences between the less formal environment of human language

and the precision required using programming languages. The use of block-based programming environments

can provide a more accessible on-ramp, otherwise known as a low ceiling, to coding as the blocks represent

actions and they help decrease the likelihood of minor coding errors that are likely with text coding

environments and syntax errors.

Educators can scaffold according to the needs of students through the introduction of only the necessary

coding blocks/coding statements that would be required for the activity. Educators should provide many

worked examples within the context of a creative task or problem solving activity before requesting students to

attempt to write new programs of their own design.

21

The Science and Technology Grades 1-8 curriculum in Ontario describes the scientific research process, the

scientific experiment process, and the engineering design process9.

When applying coding and computational thinking skills in the science and technology classroom consider

what it looks like within the following phases:

● initiating and planning (e.g., asking questions, clarifying problems, planning procedures)

● performing and recording (e.g., following procedures, accessing information, recording observations

and findings)

● analysing and interpreting (e.g., organizing data, reflecting on the effectiveness of actions performed,

drawing conclusions)

● communicating (e.g., using appropriate vocabulary, communicating findings in a variety of ways)

Scientific Research Process and
Associated Skills

Scientific Experimentation
Process and Associated Skills

Engineering Design Process
and Association Skills

Possible Student Activities Possible Student Activities Possible Student Activities

Research impact of coding and
emerging technology on an
industry (e.g. healthcare,
transportation, retail, agriculture,
etc.)

Use sensors and code to collect
data to support a scientific
experiment. Coding techniques
could also be used to analyse and
summarize the data.

Build and test a prototype of an
automated system using coding
and sensors.

Initiation and Planning

The initiation and planning (or ideation) phase of a coding project is best done in a group environment as

contributions can be provided by all group members. It is important to capture the initial ideas for a new project

during this phase and not worry about the implementation or coding details. When an initial set of requirements

have been identified in the project initiation process there should be time allocated to plan the key elements of

a proposed coded solution. Students should consider using story variable templates, flowcharts, and/or

pseudocode within this phase of code planning. This provides an opportunity for student-teacher

conversations prior to the implementation or coding phase of the project.

9 https://www.dcp.edu.gov.on.ca/en/curriculum/science-technology/context/processes

about:blank

22

Flow charts are visual representations of algorithms. Flowcharts can represent all of the fundamental coding

constructions such as sequential, selection, and repetition tasks using different symbols.

In this flowchart, the thinking behind the routine of “should I water the plant” is broken down. The diamond

shapes are reserved for decisions, and usually, show the results of those decisions (for example Yes/No).

Other shapes in the flowchart can be for process steps, or to collect input. In science, flowcharts can also be

used to summarize the steps in a procedure.

Pseudocode is a planning and algorithm design technique using short concise steps.

IF (day of week is Tuesday or Thursday)

 While soil is dry (soil sensor) and no water in dish under plant (water sensor)

 Turn on water pump to deliver 15 ml of water

 Turn off water pump

 Wait 30 Seconds (recheck sensors - loop)

 Check plant for overall health

 Sing to plant a quick song

Return to my desk

Performing and Recording

The engineering design process phase of performing and recording would involve the writing and

debugging of code artifacts.

Do I need to water the
plant? Is the soil really

dry?

Make sure that it is looking healthy, sing
it a quick song.

Add 15 mL of water.

Wait 30 seconds

Is there some
water in the dish
under the plant?

No

No

YES

It’s a day of the week that starts with a “T”, which
means I need to check on the plant!

Go back to my desk

YES

23

Code Debugging

Debugging is a core skill required throughout the coding process. Debugging is the process of identifying

errors and resolving the errors using various strategies. It tends to be unavoidable because often the code that

is created does not work as intended.

There are some general guidelines that can assist with students' ability to debug problems. In general, the

more readable the code is the easier it will be to resolve errors. For example, by using meaningful variable

names that clearly represent the intended purpose then logic errors can be identified more quickly.

Debugging is an integral part of testing one’s own code. Encouraging students to code in small chunks and test

frequently helps to reduce the task of debugging. If students test frequently, they have less code to sift through

to find where the bug or error is, and they are also more likely to be reflecting on the function of their own work.

Code Tracing

Code tracing is a common debugging technique where a segment of code would be analyzed using a step by

step approach on paper. We will explore the use of code tracing in the code example in Figure 1.

Figure 11: Troubleshooting logic errors in Scratch

A code tracing table is created by creating a table with a column for each variable and an additional column

that represents the output of the program. The learner would logically step through the code and write the

current value stored in each variable. If an input is obtained from a user a sample input value would be used.

24

length perimeter output

0 0

10
5 10

 10

10

10

Tracing is an excellent computational skill to help students understand that the values stored in variables are

temporal and therefore any previous value stored is replaced with a new value for each assignment. The

example shown here uses the set block to replace the current value of the perimeter each time. The

expression block (green) is always the same and therefore we have the incorrect output for the perimeter of a

square with a side length of 10 instead of the intended perimeter of 40 units.

Figure 12: Resolved errors in a Scratch program

Collaboration

A common misconception is that computer science and coding is a solitary task that is performed by a single

person in isolation. Successful coding projects involve contributions from many people with a shared common

goal. There are many different perspectives that should be considered when planning, designing and

implementing software solutions.

25

Pair programming is one technique that can be modeled for students at any age as a method of working

together on a shared goal. In pair programming students perform the role of driver and/or navigator throughout

the coding process.

The role of the driver is to use the coding language elements to represent the various elements of a potential

solution while the navigator is tasked with providing a focus on the overall task at hand. The navigator's role is

to consider alternative solutions and encourage the driver to consider possible errors that could occur. The pair

work as a team using a coding project resulting in better quality results and shared ownership. The driver and

navigator should be continually discussing their ideas to debug and realize their shared vision.

Assessment Strategies

Teachers can provide multiple methods for learners to express their ideas through code with the UDL

framework; this is Action and Expression of coding student knowledge and skills. The Big Book of Computing

Pedagogy indicates that “assessment should require students to develop code, interpret code, or both” (Big

Book, pg. 59).

Coding assessment strategies should be triangulated to include observation, student-teacher conversations,

and student products (Growing Success, pg 34)

Considerations for Assessment

Observations:

- Anecdotal Observations. As students work on their projects, educators can make observations about

the strategies students are using to code, and their progress towards the learning goals and success

criteria. Observations may include how students are progressing in meeting the co-created success

criteria as they relate to the curriculum (i.e., the use of loops, concurrent events, etc.).

Conversations:

- Artefact-Based Questions (ABQs). Students answer questions about their project, the code they have

written, the process, and the outcomes. By answering these questions, students reflect on their work

and on what they have learned and share these insights with educators and peers.

Products:

- Coding Portfolios / Journals. Students can share their code in a digital portfolio with a brief

explanation of what they have created. These portfolios can be housed within a Learning Management

System (LMS) and can support assessment as learning and assessment of learning. An example of a

coding journal prompt is provided below:

26

My idea is to:

Here is what I did:

Next time, this is what I’d like to fix/improve/adjust:

27

Single Point Rubric - Coding in Science and Technology

Next steps

Prochaines
étapes

Meeting Expectation
(Level 3)

Répond aux attentes

(Niveau 3)

 Exceeds expectation
(Level 4)

Surpasse les attentes

(Niveau 4)

 I can design a plan before starting to code

I can write, read and alter existing code

I can modify my code when the outcome is not what I expected

(troubleshooting)

I can use the related vocabulary appropriately

Grade 1. I can write clear and precise code (to tell a story)

Grade 2. I can write a program that has smaller steps.

Grade 3. I can test and debug my program when things do go as

expected.

Grade 4. I can write code that produces different outputs

Grade 5. I can store numbers or words in variables to use in my

code

Grade 6. I can write code that takes in different input

Grade 7. I can plan and design programs for a variety of purposes

Grade 8. I can automate a system that has more than one part

References

Big Book of Computing Pedagogy - Source: Raspberry Pi foundation

Grover, Shuchi. (2020). Computer Science in K-12: An A-Z Handbook on Teaching Programing

Growing Success - https://www.edu.gov.on.ca/eng/policyfunding/growsuccess.pdf

Israel, M., Lash, T. A., & Jeong, G. (2017). Utilizing the Universal Design for Learning Framework in K-12

Computer Science Education. Project TACTIC: Teaching All Computational Thinking through Inclusion and

Collaboration. Retrieved from University of Illinois, Creative Technology Research Lab website:

https://CTRL.education.illinois.edu/TACTICal/udl

Madkins, T. C., Howard, N. R., & Freed, N. (2020). Engaging Equity Pedagogies in Computer Science
Learning Environments. Journal of Computer Science Integration, 3 (2), 1-27. https://doi.org/10.26716/
jcsi.2020.03.2.1

Przybylla, M and Romeike, R. (2014) “Key Competences with Physical Computing”, KEYCIT 2014: key
competencies in informatics and ICT, 7, p.351
https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/8290/file/cid07_S351-361.pdf

about:blank
about:blank
https://www.edu.gov.on.ca/eng/policyfunding/growsuccess.pdf
https://ctrl.education.illinois.edu/TACTICal/udl
https://doi.org/10.26716/
https://doi.org/10.26716/
about:blank

28

Sentance, S., Waite, J. and Kallia, M. (2019). Teachers’ experiences of using PRIMM to teach programming in

school The 50th ACM Technical Symposium on Computing Science Education: SIGCSE 2019, Minnesota.

Glossary

algorithm is a precise set of steps that describe a process.

flowchart is a visual representation of computational algorithms.

Parsons problem is a form of assessment in which learnersare asked to select from a selection of code

fragments, some subset of which comprise the problem solution.

pseudocode is an informal method of designing a set of computational operations.

pair programming is a technique of developing software programs. The technique consists of a driver and

navigator. The role of the driver is to edit/modify the software program and the navigator will provide guidance

and assistance during the development process.

PRIMM (Predict-Run-Investigate-Modify-Make) is an approach to planning coding lessons and activities.

The approach includes code reading skills followed by code exploration tasks. The final phases of PRIMM

require students to plan and write new programs based on their interests.

syntax error is a violation (incorrect use) of the programming language.

about:blank
about:blank

